375 research outputs found

    Flash Lamp Annealed LTPS TFTs with ITO Bottom-Gate Structures

    Get PDF
    As displays continue to increase in resolution and refresh rate, new materials for thin film transistors (TFTs) are required. Low temperature polycrystalline silicon (LTPS) formed by excimer laser annealing (ELA) has been very successful and has been implemented in small displays, but cost and scalability issues prevent it from entering larger display products. Currently LPTS TFTs are top-gate structures due to manufacturing challenges associated with crystallizing thin film silicon when a thermally conductive gate is under portions and insulating glass under others. Bottom-gate devices offer the benefit of higher breakdown voltage, better dielectric-semiconductor interface quality, and direct access to the back-channel region for interface trap passivation. The ability to fabricate bottom-gate devices would allow for different integration and design schemes and is a prerequisite for double gate structures. Flash lamp annealed (FLA) LTPS is an attractive method to expand the size of displays that use high mobility TFTs due to its scalability and parallel production nature. In this work bottom-gate LTPS TFTs were fabricated via FLA with indium tin oxide (ITO), a transparent conductive oxide, used as the gate electrode. A p-channel TFT with 4 Β΅m channel length crystallized with a FLA energy of 4.4 J/cm2 for 250 Β΅s demonstrated a low-field mobility of 190 cm2/(Vs), a subthreshold slope of 325 mV/dec, on/off state ratio of seven orders of magnitude, and a threshold voltage of -5.4 V. A dielectric failure mechanism was identified that compromised the transistor operation under high drain bias and an alternative dopant introduction techniques were proposed to mitigate this issue. An effect due to the transduction of optical energy from the field to thermal energy under the channel via the gate was observed. Details of the FLA crystallization process, device fabrication, and electrical characteristics will be presented

    ENHANCED BORON ACTIVATION IN XENON FLASH LAMP ANNEALED POLYSILICON THROUGH PRE-AMORPHIZATION

    Get PDF
    Thin film transistors were fabricated to investigate the influence of the addition of a fluorine preamorphization implant on boron activation in the source/drain. The addition of the fluorine resulted in a higher drive current for high dose implants (5x1015 cm-2). The higher current as well as an increased calculated mobility supports the hypothesis that fluorine implant increases boron activation. Device performance was noticed to be dependent on its location on the wafer complicating experimental analysis. Additional system control would allow for more direct treatment comparisons

    Proposal for a cumulant-based Bell test for mesoscopic junctions

    Full text link
    The creation and detection of entanglement in solid state electronics is of fundamental importance for quantum information processing. We prove that second-order quantum correlations can be always interpreted classically and propose a general test of entanglement based on the violation of a classically derived inequality for continuous variables by fourth-order quantum correlation functions. Our scheme provides a way to prove the existence of entanglement in a mesoscopic transport setup by measuring higher order cumulants without requiring the additional assumption of a single charge detectionComment: 6 pages, 1 figure, detailed proof of weak positivity and Bell-type inequalit

    Flash lamp annealed polycrystalline silicon as a potential candidate for large panel manufacturing

    Get PDF
    The flat-panel display industry is in pursuit of TFT manufacturing processes which are cost-effective, easily scalable to large glass panels, and meet the performance requirements of advanced display products. While excimer laser anneal (ELA) low-temperature polycrystalline silicon (LTPS) can offer exceptional TFT performance, a lower grade LTPS may still satisfy product requirements at a lower production cost. Flash-Lamp Annealing (FLA) is an emerging candidate for the manufacture of LTPS. Multi-lamp exposure systems with high repetition pulse rates would potentially offer significant advantages in manufacturing throughput and cost over ELA. Techniques to overcome challenges that have hindered device scaling and reduction in variation of device operation are under investigation. The following presents a status update on the development of FLA Polycrystalline Silicon (FLAPS) technology. The FLA equipment used for this work was a NovaCentrix PulseForge 3300 system, capable of uniform exposure of a 7 cm x 12 cm area at intensities as high as 50 kW/cm2 over microseconds pulse duration. PMOS TFTs were fabricated using combinations of FLA, ion implantation and furnace annealing to define the source/drain and channel regions. Predefined polygons of 60 nm thick amorphous silicon vertically sandwiched between layers of SiO2 were crystallized on Corning Lotus NXT display glass using single-pulse FLA exposure. The amorphous silicon melts while absorbing a sufficient fraction of the xenon emission spectrum, and becomes polycrystalline while staying within the thermal constraints of the underlying glass substrate. Boron dopant ions were implantation into the source/drain regions defined by lithographic patterning or a self-aligned gate strategy. Boron activation was realized by combinations of FLA, furnace annealing, and pre-amorphization using an electrically inactive species. FLA conditions following dopant introduction avoided silicon melting which causes significant lateral diffusion. Representative electrical characteristics are shown in figure 1. While the device operation demonstrates a general dependence on the degree of dopant activation, observations on the electrical characteristics indicate a complex relationship between defect states and the specific implant/activation strategy applied. The influence of doping strategy on both device performance and resistance to failure is the primary focus of this work. Additional experiments involving variations in the FLAPS morphology will also be discussed. Please click Additional Files below to see the full abstract

    Glioblastoma Models Reveal the Connection between Adult Glial Progenitors and the Proneural Phenotype

    Get PDF
    Tumor heterogeneity is a major obstacle for finding effective treatment of Glioblastoma (GBM). Based on global expression analysis, GBM can be classified into distinct subtypes: Proneural, Neural, Classical and Mesenchymal. The signatures of these different tumor subtypes may reflect the phenotypes of cells giving rise to them. However, the experimental evidence connecting any specific subtype of GBM to particular cells of origin is lacking. In addition, it is unclear how different genetic alterations interact with cells of origin in determining tumor heterogeneity. This issue cannot be addressed by studying end-stage human tumors.To address this issue, we used retroviruses to deliver transforming genetic lesions to glial progenitors in adult mouse brain. We compared the resulting tumors to human GBM. We found that different initiating genetic lesions gave rise to tumors with different growth rates. However all mouse tumors closely resembled the human Proneural GBM. Comparative analysis of these mouse tumors allowed us to identify a set of genes whose expression in humans with Proneural GBM correlates with survival.This study offers insights into the relationship between adult glial progenitors and Proneural GBM, and allows us to identify molecular alterations that lead to more aggressive tumor growth. In addition, we present a new preclinical model that can be used to test treatments directed at a specific type of GBM in future studies

    Accuracy of Nasal Nitric Oxide Measurement as a Diagnostic Test for Primary Ciliary Dyskinesia: A Systematic Review and Meta-Analysis

    Get PDF
    RATIONALE: Primary ciliary dyskinesia (PCD) is a rare disorder causing chronic otosinopulmonary disease, generally diagnosed through evaluation of respiratory ciliary ultrastructure and/or genetic testing. Nasal nitric oxide (nNO) measurement is used as a PCD screening test because patients with PCD have low nNO levels, but its value as a diagnostic test remains unknown. OBJECTIVES: To perform a systematic review to assess the utility of nNO measurement (index test) as a diagnostic tool compared with the reference standard of electron microscopy (EM) evaluation of ciliary defects and/or detection of biallelic mutations in PCD genes. DATA SOURCES: Ten databases were searched for reference sources from database inception through July 29, 2016. DATA EXTRACTION: Study inclusion was limited to publications with rigorous nNO index testing, reference standard diagnostic testing with EM and/or genetics, and calculable diagnostic accuracy information for cooperative patients (generally >5 yr old) with high suspicion of PCD. SYNTHESIS: Meta-analysis provided a summary estimate for sensitivity and specificity and a hierarchical summary receiver operating characteristic curve. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess study quality, and Grading of Recommendations Assessment, Development, and Evaluation was used to assess the certainty of evidence. In 12 study populations (1,344 patients comprising 514 with PCD and 830 without PCD), using a reference standard of EM alone or EM and/or genetic testing, summary sensitivity was 97.6% (92.7-99.2) and specificity was 96.0% (87.9-98.7), with a positive likelihood ratio of 24.3 (7.6-76.9), a negative likelihood ratio of 0.03 (0.01-0.08), and a diagnostic odds ratio of 956.8 (141.2-6481.5) for nNO measurements. After studies using EM alone as the reference standard were excluded, the seven studies using an extended reference standard of EM and/or genetic testing showed a summary sensitivity of nNO measurements of 96.3% (88.7-98.9) and specificity of 96.4% (85.1-99.2), with a positive likelihood ratio of 26.5 (5.9-119.1), a negative likelihood ratio of 0.04 (0.01-0.12), and a diagnostic odds ratio of 699.3 (67.4-7256.0). Certainty of the evidence was graded as moderate. CONCLUSIONS: nNO is a sensitive and specific test for PCD in cooperative patients (generally >5 yr old) with high clinical suspicion for this disease. With a moderate level of evidence, this meta-analysis confirms that nNO testing using velum closure maneuvers has diagnostic accuracy similar to EM and/or genetic testing for PCD when cystic fibrosis is ruled out. Thus, low nNO values accompanied by an appropriate clinical phenotype could be used as a diagnostic PCD test, though EM and/or genetics will continue to provide confirmatory information

    Caching and Interpolated Likelihoods: Accelerating Cosmological Monte Carlo Markov Chains

    Full text link
    We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a "proof of concept", and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.Comment: v2 Trivial Latex change. Source code: http://easther.physics.yale.edu/interpmc.htm

    How simulations fail

    Get PDF
    • …
    corecore